Blog

LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

22

Ở bài trước chúng ta đã cùng nhau tìm hiểu cách thức hoạt động cũng như ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian bàn riêng về màn hình LCD.

Ở bài trước chúng ta đã cùng nhau tìm hiểu cách thức hoạt động cũng như ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian bàn riêng về màn hình LCD.

LCD là một cụm từ có lẽ đã trở nên quá phổ biến với người tiêu dùng Việt Nam, nó phổ biến đến mức mỗi khi nhắc đến màn hình mỏng với một người không mấy quan tâm đến lĩnh vực phần cứng thì hầu như không thể. chắc chắn người đó sẽ gọi nó là màn hình LCD hay TV LCD. Đây cũng là hệ quả của sự phát triển vượt bậc của dòng màn hình LCD so với hai loại màn hình còn lại trên thị trường là Plasma và OLED.

Do chiếm tỷ trọng lớn trên thị trường, nên bản thân các dòng sản phẩm LCD có 3 loại công nghệ khác nhau, dựa trên 3 loại tấm nền mà màn hình sử dụng: TN, IPS và VA.

LCD – TN (Xoắn Nematic)

Có ưu điểm vượt trội về giá thành cũng như điện năng tiêu thụ, nhưng bù lại chất lượng màu sắc hiển thị trên tấm nền TN ở mức vừa phải.

Nguyên lý làm việc

Đầu tiên chúng ta hãy thảo luận về nguồn sáng được sử dụng trong màn hình. Đối với màn hình LCD đơn sắc và đơn giản như màn hình đen trắng trên máy tính bỏ túi, ánh sáng được cung cấp từ bên ngoài (ánh sáng trường học, ánh sáng mặt trời, v.v.) và ở dưới cùng của bảng điều khiển. Màn hình được phủ một lớp kim loại giúp phản chiếu như một tấm gương phản chiếu ánh sáng bên ngoài trở lại mắt chúng ta, giúp chúng ta nhìn thấy hình ảnh hiển thị trên màn hình. Loại thứ hai là các LCD thông thường hiện nay không thể chỉ sử dụng ánh sáng phản xạ để tạo hình ảnh nên mỗi loại màn hình đều phải gắn thêm một bộ phận gọi là đèn nền, đèn nền này có thể sử dụng các kiểu chiếu sáng khác nhau. đèn huỳnh quang hoặc đèn LED để chiếu sáng màn hình.

Các nguồn sáng này trước tiên sẽ phải đi qua một lớp kính lọc phân cực, có tính năng chỉ cho tia sáng truyền qua theo một hướng nhất định. Sau đó các tia sáng này sẽ đi qua lớp tinh thể lỏng TN. Tính chất của lớp tinh thể lỏng này là có khả năng làm xoắn tia sáng đi ra từ tấm lọc phân cực thứ nhất một góc 90 độ, sau khi ra khỏi lớp tinh thể lỏng này, ánh sáng tiếp tục truyền qua. một lớp bộ lọc màu để tạo ra 3 màu đỏ, xanh dương và xanh lá cây. Ánh sáng sau khi có các màu cơ bản này sẽ tiếp tục đi qua một lớp bản phân cực thứ hai có hướng xuyên sáng vuông góc với bản thứ nhất. Với những tia sáng không bị xoắn 90 độ khi đi qua lớp tinh thể lỏng do lỗi kỹ thuật, ánh sáng sẽ bị cản lại ở lớp lọc phân cực.

Khi một dòng điện được đặt vào lớp tinh thể lỏng này, các tia sáng đi qua sẽ không xoắn và ánh sáng đi qua sẽ bị chặn ở lớp lọc phân cực phía trên. Dòng điện chạy qua càng lớn thì độ tách sóng càng cao đồng nghĩa với việc ít ánh sáng đi qua hơn, việc kiểm soát dòng điện vô hình chung sẽ làm thay đổi độ sáng và tối của ánh sáng đến mắt chúng ta. Mỗi điểm ảnh trên màn hình bao gồm 3 điểm ảnh con với 3 màu cơ bản như đã nói ở trên, kết hợp với sự thay đổi độ sáng trên mỗi điểm ảnh con, chúng ta sẽ có được một điểm ảnh đủ màu.

Điểm mạnh của loại màn hình LCD sử dụng tấm nền TN này là giá thành rất rẻ và có khả năng sản xuất hàng loạt. Ngoài ra, loại màn hình này còn có tốc độ phản hồi rất cao (khoảng 2 mili giây), khái niệm tốc độ phản hồi đã được trình bày trong bài viết trước nên người viết xin phép không nhắc lại. Tốc độ phản hồi cao giúp hình ảnh hiển thị không bị nhòe trong các cảnh hành động tốc độ cao, đồng thời cho phép nhà sản xuất đẩy tốc độ làm tươi khung hình lên cao hơn, đây là một lợi thế. thay thế cho các công nghệ hiển thị 3D sử dụng kính màn trập. Tuy nhiên, tốc độ phản hồi của màn hình thường được các nhà sản xuất đẩy lên quá mức để trở thành một công cụ quảng cáo nghe có vẻ khá hoành tráng với những người không hiểu về công nghệ, bởi các loại màn hình có tốc độ phản hồi khá cao. Nếu nhỏ hơn 10 mili giây, mắt người gần như không thể cảm nhận được sự khác biệt, vì vậy dù là 2 mili giây (mili giây) hay 8 mili giây, trải nghiệm của chúng ta vẫn giống nhau.

Mặt khác, một phần là do chất lượng hình ảnh của các loại màn hình này thuộc hàng thấp nhất trong các công nghệ hiển thị hiện nay và dải màu hiển thị trên các TV LCD loại TN này rất hẹp (hay có nghĩa là nhiều gam màu gần giống nhau. sẽ được hiển thị dưới dạng 1 màu).

Bởi vì, mỗi điểm ảnh phụ trong một pixel sẽ chỉ có thể đại diện cho 6 bit độ sáng khác nhau, tức là với một điểm ảnh phụ màu đỏ, ví dụ, khi điều chỉnh công suất cấp cho tinh thể của ánh sáng khi ra khỏi lớp bộ lọc sẽ chỉ có thể đại diện cho 64 sắc thái khác nhau của màu đỏ (6bit = 2 ^ 6). Tương tự với 2 màu xanh còn lại, khi trộn các màu như vậy ta sẽ thu được kết quả là dải màu bị thu hẹp như đã nói ở trên. Khi đặt hai màu khác nhau rất gần nhau, mắt người sẽ có cơ chế trộn hai màu đó lại với nhau để tạo ra một vùng màu ở giữa giúp màu sắc thay đổi đồng đều hơn, đó là cách mà màn hình TN sử dụng để tạo ra một dải liên tục. màu sắc.

Một nhược điểm nữa là góc nhìn của loại màn hình TN này rất tệ, chỉ cần nhìn từ các hướng khác mặt trước là màu sắc đã gần như thay đổi hoàn toàn. Đây có lẽ là lý do tại sao trước đây loại tấm nền này thường được sử dụng trong màn hình máy tính hoặc laptop, khi giá LCD cao cấp chưa cao như bây giờ, do người dùng máy tính cá nhân thường ngồi nhiều. chính diện.

LCD IPS (Chuyển đổi mặt phẳng)

IPS là một loại công nghệ được Hitachi phát triển vào năm 1996, mục đích chính của công nghệ này là khắc phục những nhược điểm lớn của tấm nền TN nói trên.

Nguyên lý làm việc

Cấu tạo của tấm nền IPS không khác nhiều so với loại TN từ các lớp lọc phân cực, lớp lọc màu và lớp tinh thể. Sự khác biệt nằm ở lớp tinh thể lỏng, các lớp này lúc này được xếp theo chiều ngang (đây là nơi bắt nguồn của cụm từ “In Plane”) song song với hai lớp phân cực trên và dưới. Các điện cực cũng phải được bố trí ở mặt dưới chứ không phải bố trí ở hai bên như màn hình TN. Ban đầu, khi không có dòng điện chạy qua các điện cực, mạng tinh thể này sắp xếp theo phương ngang và chắn sáng, khi cho dòng điện vào hai điện cực ở mặt dưới, dòng điện sẽ tạo ra từ trường giống như hình nam. Nam châm làm cho các tinh thể quay một góc 90 độ nhưng vẫn song song với bề mặt màn hình. Nguồn điện cung cấp càng nhiều thì góc quay của tinh thể càng lớn, ở 90 độ ánh sáng của đèn nền có thể đi qua nhiều nhất và hiển thị độ sáng cao nhất trong các màu.

Mỗi subpixel (subpixel) trong một pixel của tấm nền IPS có thể thể hiện tối đa 8 bit (2 ^ 8 = 256 mức) độ sáng tương đương với 256 mức sáng khác nhau, vì vậy khi trộn 3 màu chúng ta sẽ thu được dải màu rộng hơn và liên tục hơn rất nhiều. hơn màn hình TN mà không cần dùng đến thủ thuật của kiểu TN. Đây cũng là lý do chính khiến màn hình IPS trở thành lựa chọn số một của các nhà thiết kế vì nó cho màu sắc trung thực hơn rất nhiều so với màn hình TN.

Khi khắc phục những nhược điểm lớn của tấm nền TN như góc nhìn, màu sắc thì tấm nền IPS lại gặp phải những nhược điểm mà màn hình TN có thể khắc phục dễ dàng.

Thời gian để một điểm ảnh chuyển từ đen sang trắng trên màn hình IPS chậm hơn nhiều so với màn hình TN (khoảng 6 đến 16ms) nên khi hiển thị ảnh động tốc độ cao, màn hình IPS cũ thường để lại vệt sáng. của hình ảnh đáng lẽ đã bị tắt trước đó, kéo theo hiện tượng mà chúng ta vẫn gọi là hiện tượng “bóng mờ”.

Vì tốc độ phản hồi chậm nên cho đến nay, các LCD sử dụng tấm nền IPS vẫn rất khó đạt được tần số làm tươi lên tới 120 Hz để phục vụ cho các màn hình 3D hiện nay.

Và bởi vì sự sắp xếp tinh thể của màn hình IPS cho phép ánh sáng đi qua ít hơn ngay cả khi ở trạng thái mở, loại màn hình này cần đèn nền sáng hơn bình thường để có thể tạo ra màu sắc sáng hơn nếu không. không có màn hình sẽ có cảm giác tối và u ám. Vì vậy, trong những ngày đầu của màn hình IPS, người ta không sử dụng nó cho các thiết bị sử dụng pin như máy tính xách tay hay điện thoại. Nhưng dù sao thì đó cũng chỉ là sự khởi đầu của IPS, và ngày nay những nhược điểm đó đã được cải thiện rất nhiều.

Màn hình dán nhãn Super IPS (S-IPS) hay Advanced Super IPS đều là những công nghệ nhỏ, khắc phục tối đa nhược điểm của công nghệ IPS thông thường cho các loại TN, nhưng bù lại giá thành đắt hơn. khá khác so với những cái thông thường.

Xem thêm:  Hướng dẫn 3 cách nghe nhạc trên Youtube khi tắt màn hình iPhone (Thành công 100%)

LCD VA (Căn chỉnh theo chiều dọc)

TN và IPS đều có những ưu nhược điểm riêng không thể khắc phục hoàn toàn, vì vậy các nhà sản xuất đã cố gắng trung hòa cả hai loại công nghệ để tạo ra một thứ gì đó ở giữa hai loại tấm nền này là một loại tấm nền. cho tốc độ phản hồi vừa phải tránh bóng mờ nhưng vẫn có dải màu trung thực và đẹp hơn so với màn hình TN và tấm nền VA ra đời.

Nguyên lý làm việc

Cấu trúc cơ bản của một điểm ảnh trong tấm nền VA không khác gì cấu trúc chung của màn hình LCD nói chung hay màn hình IPS LCD nói riêng. Thay vì căn chỉnh các tinh thể song song với kính, màn hình VA sắp xếp các tinh thể vuông góc với mặt kính lọc (cũng là nguồn gốc của cụm từ “Vertical Aligned”). Các điện cực trở về vị trí sắp xếp trước của màn TN, 1 trên 1 dưới để có thể tạo ra từ trường thẳng đứng. Khi không có dòng điện, các tinh thể sẽ chắn hoàn toàn ánh sáng từ đèn nền đi lên, khi có điện trường, các tinh thể sẽ hơi nghiêng để cho ánh sáng truyền qua, góc càng lớn thì ánh sáng càng sáng. Nhiều ánh sáng đi qua.

Các loại công nghệ phụ khác

DẪN ĐẾN

Thời gian gần đây, nhiều hãng sản xuất tivi dùng chiêu trò marketing khiến mọi người nghĩ rằng LED là công nghệ màn hình hoàn toàn mới, nhưng thực chất đó chỉ là công nghệ đèn nền mới cho ánh sáng tốt hơn và tiết kiệm năng lượng hơn. tiết kiệm năng lượng hơn so với đèn nền huỳnh quang vẫn được sử dụng trong quá khứ. Công nghệ này hiện có 2 loại chính là LED toàn phần và LED viền. Edge LED là loại màn hình mà các đèn LED chỉ được bố trí xung quanh viền màn hình giống như đèn huỳnh quang và phản xạ ánh sáng ở trung tâm nên loại màn hình này thường có giá tương đương màn chiếu thông thường nhưng vẫn được nhiều người tin dùng. Nhà sản xuất của. Nhãn hiển thị LED. Loại thứ hai là Full LED, công nghệ này lợi dụng độ nhỏ của đèn LED nên đã tạo ra một tấm LED dày đặc đặt ngay sau các lớp lọc phân cực, chứ không phải phản xạ ánh sáng qua tấm nhựa, vì vậy ánh sáng ở loại này của màn hình, nó bao phủ mọi góc của màn hình và độ sáng cao hơn nhiều so với Edge LED, nhưng giá cả khác nhau.

TFT (Bóng bán dẫn màng mỏng)

Là công nghệ tạo ra các bóng bán dẫn bằng nhiều lớp kim loại và nhựa mỏng xen kẽ nhau. Công nghệ này chỉ đơn giản là thay đổi cách các tinh thể được cung cấp năng lượng. Và hầu hết các màn hình phổ biến ngày nay đều sử dụng công nghệ này để cung cấp năng lượng cho các tinh thể.

Qua bài viết, hy vọng các bạn sẽ hiểu phần nào về cách các nhà sản xuất đặt tên cho các sản phẩm công nghệ cao này, từ đó biết được đâu là thay đổi công nghệ thực sự và đâu chỉ là tiến bộ công nghệ cũ.

Tham khảo: thế giới PC


Vừa rồi, bạn vừa mới đọc xong bài viết về
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

tại Webmax.
Hy vọng rằng những kiến thức trong bài viết
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

sẽ làm cho bạn để tâm hơn tới vấn đề
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

hiện nay.
Hãy cũng với Tip Techs khám phá thêm nhiều bài viết về
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

nhé.

Bài viết
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)

đăng bởi vào ngày 2022-08-02 19:24:39. Cảm ơn bạn đã bỏ thời gian đọc bài tại Webmax

Nguồn: genk.vn

Xem thêm về
LCD, S-LCD, AMOLED… công nghệ mới hay chỉ là chiêu thức kinh doanh (Phần 2)
#LCD #SLCD #AMOLED.. #công #nghệ #mới #hay #chỉ #là #chiêu #thức #kinh #doanh #Phần
Ở bài trước, chúng ta đã cùng tìm hiểu cách thức hoạt động cũng như các ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian để bàn về riêng loại màn hình LCD.

#LCD #SLCD #AMOLED.. #công #nghệ #mới #hay #chỉ #là #chiêu #thức #kinh #doanh #Phần

Ở bài trước, chúng ta đã cùng tìm hiểu cách thức hoạt động cũng như các ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian để bàn về riêng loại màn hình LCD.
 
LCD là cụm từ có lẽ đã trở nên quá phổ thông với người tiêu dùng Việt Nam, nó phổ biến đến mức mà bất kì khi nào bạn nhắc tới màn hình mỏng với một người không mấy quan tâm về lĩnh vực phần cứng thì gần như chắc chắn người đó sẽ gọi nó là một chiếc màn hình LCD hay chiếc TV LCD. Âu đây cũng là hệ quả của sự phát triển quá vượt trội của dòng màn hình LCD so với 2 loại còn lại của thị trường là Plasma và OLED.
 

 
Chính vì chiếm tỉ lệ lớn trên thị trường nên bản thân bên trong các dòng sản phẩm LCD cũng có đến 3 dạng công nghệ khác nhau phân biệt dựa trên 3 loại panel mà màn hình sử dụng là TN, IPS và VA.
 
LCD – TN (Twisted Nematic)
 
Có những ưu điểm vượt trội về mặt giá thành cũng như điện năng tiêu thụ nhưng bù lại chất lượng màu sắc thể hiện trên loại panel TN chỉ ở mức vừa đủ nhìn.
 
Nguyên lý hoạt động
 

 
Trước tiên chúng ta hãy bàn tới nguồn sáng dùng trong màn hình. Với những loại màn hình LCD đơn sắc và đơn giản như màn hình đen trắng trên những chiếc máy tính bỏ túi thì ánh sáng được cấp từ bên ngoài (ánh đèn học, ánh sáng mặt trời v.v…) và ở dưới đáy của tấm màn hình người ta đặt 1 lớp phủ kim loại giúp phản quang giống như gương để phản chiếu chính ánh sáng bên ngoài lại mắt chúng ta khiến chúng ta nhìn được hình ảnh hiển thị trên màn hình. Loại thứ 2 là các loại LCD thông dụng ngày nay không thể chỉ dùng ánh sáng phản chiếu để tạo hình ảnh được nên mỗi loại màn này phải gắn kèm theo một bộ phận gọi là đèn nền, đèn nền này có tể sử dụng các loại đèn huỳnh quang hay đèn LED để tạo nguồn sáng cho màn hình.
 

 
Những nguồn sáng này trước tiên sẽ phải đi qua một lớp kính lọc phân cực, lớp kính này có đặc điểm chỉ cho các tia sáng đi qua theo 1 hướng nhất định. Sau đó những tia sáng này sẽ đi qua lớp tinh thể lỏng TN. Đặc tính của lớp tinh thể lỏng này là nó có có khả năng vặn xoắn các tia sáng đi ra từ lớp kính lọc phân cực đầu tiên một góc 90 độ, sau khi đi ra khỏi lớp tinh thể lỏng này ánh sáng tiếp tục chạy qua một lớp kính lọc màu để tạo ra 3 màu đỏ, xanh da trời và xanh lá. Những ánh sáng sau khi đã có màu sắc cơ bản này sẽ tiếp tục đi qua một lớp kính phân cực thứ 2 có chiều lọt sáng vuông góc với tấm thứ nhất. Với những tia sáng không bị xoắn 90 độ khi đi qua lớp tinh thể lỏng do lỗi kỹ thuật thì ánh sáng sẽ bị chặn lại ở lớp kính lọc phân cực.
 
Khi có dòng điện cấp cho lớp tinh thể lỏng này, các tia sáng đi qua sẽ tháo xoắn và ánh sáng đi qua sẽ bị chặn lại ở lớp lọc phân cực phía trên. dòng điện chạy qua càng lớn thì độ tháo xoắn càng cao đồng nghĩa với việc ánh sáng đi qua sẽ càng ít, việc điều khiển dòng điện vô hình chung sẽ làm thay đổi độ sáng tối của ánh sáng đi tới mắt chúng ta. Mỗi điểm ảnh trên màn hình bao gồm 3 điểm ảnh phụ với 3 màu sắc cơ bản như đã nói ở trên kết hợp với sự thay đổi độ sáng trên mỗi điểm ảnh phụ này chúng ta sẽ được một điểm ảnh có đầy đủ màu sắc.
 
Điểm mạnh của loại màn hình LCD sử dụng panel TN này chính là giá thành rất rẻ và có khả năng sản xuất hàng loạt. Ngoài ra loại màn này còn có tốc độ đáp ứng rất cao (khoảng 2 phần nghìn giây), khái niệm về tốc độ đáp ứng đã được trình bày trong bài trước nên người viết xin phép không nhắc lại. Tốc độ đáp ứng cao khiến cho hình ảnh hiển thị không bị mờ viền ở những cảnh hành động với tốc độ cao, đồng thời cũng cho phép các nhà sản xuất có thể đẩy tốc độ refresh khung hình lên cao hơn, đây là một lợi thế cho các loại công nghệ hiển thị 3D sử dụng kính màn trập. Thế nhưng tốc độ đáp ứng của màn hình thường được các nhà sản xuất đẩy lên quá đáng để trở thành một công cụ quảng cáo nghe khá oai với những người không hiểu về công nghệ, bởi lẽ các loại màn hình có tốc độ đáp ứng thấp hơn 10 phần nghìn giây là mắt người đã gần như không thể cảm nhận được sự khác biệt rồi nên dù đó là 2 ms (mili giây) hay 8 ms thì trải nghiệm của chúng ta vẫn không có gì thay đổi cả. 
 
Mặt khác một phần cũng vì chất lượng hình ảnh của các loại màn hình này thuộc loại thấp nhất trong số các công nghệ màn hình hiện nay và dải màu hiển thị trên những chiếc TV LCD loại TN này rất hẹp (hay có nghĩa là nhiều gam màu gần giống nhau sẽ được thể hiện thành 1 màu).
 

 
Bởi lẽ, mỗi điểm ảnh phụ trong 1 điểm ảnh sẽ chỉ có thể thể hiện được 6 bit độ sáng khác nhau, nghĩa là với một pixel phụ màu đỏ chẳng hạn, khi điều chỉnh điện cấp vào tinh thể độ sáng của ánh sáng khi ra khỏi lớp lọc sẽ chỉ có thể thể hiện được 64 sắc đỏ khác nhau (6bit = 2^6). Tương tự với 2 màu xanh còn lại nên khi pha trộn những màu sắc như vậy chúng ta sẽ thu được kết quả là dải màu sắc bị hẹp như đã nói ở trên. Khi 2 màu khác nhau đặt rất sát nhau, mắt người sẽ có cơ chế tự hòa 2 màu đó lại để tạo ra một vùng màu ở giữa giúp màu sắc biến đổi đều hơn, đó là cách mà loại màn hình TN sử dụng để tạo ra được dải màu sắc liên tục.
 
Một nhược điểm nữa chính là góc nhìn của loại màn hình TN này rất tệ, chỉ cần nhìn từ các hướng không phải hướng chính diện là màu sắc đã gần như bị thay đổi hoàn toàn. Đây có lẽ cũng chính là lý do loại panel này thường được dùng trong các loại màn hình máy tính hay laptop ngày trước, cái thời mà giá các loại LCD cao cấp chưa được như bây giờ, bởi người dùng máy tính cá nhân thường ngồi chính diện.
 
LCD IPS (In Plane Switching)
 
IPS là loại công nghệ được hãng Hitachi phát triển vào năm 1996, mục đích chính của công nghệ này chính là để khắc phục những nhược điểm lớn của loại panel TN nói trên.
 
Nguyên lý hoạt động
 
Cấu tạo của panel IPS không khác nhiều so với loại TN từ các lớp lọc phân cực, lớp lọc màu và lớp tinh thể. Điểm khác biệt nằm ở lớp tinh thể lỏng, các lớp này giờ đây được xếp theo hàng ngang (đây là nguồn gốc của cụm từ “In Plane”) song song với 2 lớp kính phân cực ở trên và dưới. Các điện cực cũng phải xếp trên mặt dưới chứ không xếp ở 2 bên như màn TN. Ban đầu khi không có dòng điện chạy qua các điện cực, mạng tinh thể này xếp theo chiều ngang và chắn ánh sáng, khi cho dòng điện chạy vào 2 điện cực ở mặt dưới, dòng điện sẽ tạo ra 1 từ trường giống như nam châm khiến cho các tinh thể quay đi 1 góc 90 độ nhưng vẫn song song với mặt màn hình. Lượng điện cấp vào càng nhiều thì tinh thể sẽ quay 1 góc càng lớn, ở vị trí 90 độ ánh sáng của đèn nền có thể lọt qua nhiều nhất và thể hiện được độ sáng cao nhất của màu sắc.
 

Xem thêm:  Thủ thuật xoá nick của mình trong danh sách người khác

 
Mỗi subpixel (điểm ảnh phụ) trong một điểm ảnh của panel IPS có thể thể hiện tới 8 bit (2^8 =256 cấp) độ sáng tương đương 256 mức sáng khác nhau nên khi pha trộn 3 màu chúng ta sẽ được những dải màu rộng và liên tục hơn rất nhiều so với màn TN mà không cần dùng đến thủ thuật đánh lừa mắt của loại TN. Đây cũng là lý do chính khiến màn hình IPS trở thành sự lựa chọn số một cho những người làm công việc thiết kế vì nó cho màu sắc trung thực hơn rất nhiều so với màn TN.
 
Khi khắc phục được những nhược điểm lớn của loại panel TN như góc nhìn và màu sắc thì panel IPS lại vấp phải những nhược điểm mà màn TN có thể vượt qua dễ dàng.
 
Thời gian để 1 điểm ảnh chuyển từ đen sang trắng tren màn IPS chậm hơn nhiều so với màn TN (khoản từ 6 đến 16ms) nên khi thể hiện những hoạt cảnh tốc độ cao, màn hình IPS đời cũ thường để lại một vệt sáng của hình ảnh đáng lẽ phải tắt từ trước chạy theo mà chúng ta vẫn gọi là hiện tượng “bóng ma”.
 
Chính tốc độ đáp ứng chậm nên đến nay các loại LCD sử dụng tấm nền IPS vẫn rất khó có thể đạt được tốc độ refresh tới 120 Hz để phục vụ cho các loại màn hình 3D hiện nay.
 
Và vì cách bố trí tinh thể của màn IPS khiến cho ánh sáng đi qua không nhiều ngay cả khi đang ở trạng thái mở nên loại màn hình này cần đèn nền sáng hơn bình thường để có thể tạo ra được màu sắc tươi sáng hơn nếu không màn sẽ bị cảm giác tối và u ám. Nên thời kì đầu của màn IPS người ta không dùng nó cho các loại thiết bị dùng pin như laptop hay điện thoại. Nhưng dù sao đó cũng chỉ là thời kì đầu của IPS, còn ngày nay những nhược điểm đó đã được cải tiến rất nhiều.
 
Các loại màn hình có mác Super IPS (S-IPS) hay Advanced Super IPS đều là những công nghệ nhỏ giúp cải thiện tối đa những nhược điểm của công nghệ IPS thông thường đối với loại TN nhưng đổi lại là giá thành đắt hơn kha khá so với các loại thông thường.
 

 
LCD VA (Vertically Aligned)
 
TN và IPS đều có những ưu nhược điểm riêng mà không thể khắc phục hoàn toàn, nên các hãng sản xuất đã cố gắng trung hòa cả 2 loại cộng nghệ này để tạo ra 1 thứ nằm ở giữa 2 loại panel này, một loại panel cho tốc độ đáp ứng vừa phải để không bị hiện tượng bóng ma nhưng vẫn có dải màu sắc trung thực và đẹp hơn màn hình TN và panel VA ra đời.
 
Nguyên lý hoạt động 
 

 
Cấu trúc cơ bản của 1 điểm ảnh trong panel VA cũng không có gì khác so với cấu trúc chung của màn LCD nói chung hay màn LCD IPS nói riêng. Thay vì xếp các tinh thể song song với mặt kính thì màn VA lại xếp các tinh thể vuông góc với mặt kính lọc (cũng là nguồn gốc cho cụm từ “Vertically Aligned”). Các điện cực lại quay về cách sắp xếp của màn TN trước đây là 1 trên 1 dưới để có thể tạo ra từ trường theo chiều dọc. Khi không có dòng điện, các tinh thể sẽ chặn hoàn toàn ánh sáng từ đèn nền đi lên, khi cấp điện từ trường sẽ làm các tinh thể này nghiêng đi 1 chút để cho phép ánh sáng đi qua, góc nghiêng càng lớn thì ánh sáng đi qua càng nhiều.
 
Các loại công nghệ phụ khác
 
LED
 

 
Thời gian gần đây rất nhiều hãng sản xuất TV dùng các chiêu thức maketing để khiến mọi người nhầm tưởng LED là một công nghệ màn hình mới hoàn toàn, nhưng thực chất nó chỉ là công nghệ đèn nền mới cho ánh sáng tốt hơn và tiết kiệm điện hơn so với đèn nền huỳnh quang vẫn được sử dụng trước đây. Công nghệ này hiện nay có 2 loại chính là Full LED và edge LED. Edge LED là loại màn hình mà đèn LED chỉ được bố trí xung quanh viền màn hình giống như đèn huỳnh quang và hắt sáng vào trung tâm nên loại màn này thường có giá không khác màn hình thường là mấy nhưng vẫn được nhiều nhà sản xuất gắn mác màn hình LED. Loại thứ 2 là Full LED, công nghệ này lợi dụng sự nhỏ bé của các bóng LED nên đã tạo ra 1 tấm đèn LED dày đặc đặt ngay sau các lớp lọc phân cực chứ không hắt sáng vào thông qua tấm plastic nữa nên ánh sáng ở loại màn này phủ đều đến mọi góc cạnh của màn hình và độ sáng cũng cao hơn rất nhiều so với Edge LED nhưng giá thành thì lại khác nhau 1 trời 1 vực.
 
TFT  (Thin film transistor)
 
Là công nghệ tạo ra các transistor bán dẫn bằng nhiều lớp kim loại mỏng và nhựa xếp xen kẽ nhau. Công nghệ này chỉ đơn giản là thay đổi cách cấp điện cho các tinh thể. Và hâu hết các loại màn hình thông dụng hiện nay đều sử dụng công nghệ này để cấp điện cho các tinh thể.
 
Qua bài viết hy vọng các bạn sẽ hiểu phần nào về cách mà các nhả sản xuất đặt tên cho những sản phẩm công nghệ cao này qua đó biết được đâu là thay đổi công nghệ thực sự và đâu chỉ là cái tiến công nghệ cũ.
 
Tham khảo: PC World

#LCD #SLCD #AMOLED.. #công #nghệ #mới #hay #chỉ #là #chiêu #thức #kinh #doanh #Phần
Ở bài trước, chúng ta đã cùng tìm hiểu cách thức hoạt động cũng như các ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian để bàn về riêng loại màn hình LCD.

#LCD #SLCD #AMOLED.. #công #nghệ #mới #hay #chỉ #là #chiêu #thức #kinh #doanh #Phần

Ở bài trước, chúng ta đã cùng tìm hiểu cách thức hoạt động cũng như các ưu nhược điểm của 2 loại màn hình là Plasma và OLED, trong bài viết hôm nay chúng ta sẽ dành thời gian để bàn về riêng loại màn hình LCD.
 
LCD là cụm từ có lẽ đã trở nên quá phổ thông với người tiêu dùng Việt Nam, nó phổ biến đến mức mà bất kì khi nào bạn nhắc tới màn hình mỏng với một người không mấy quan tâm về lĩnh vực phần cứng thì gần như chắc chắn người đó sẽ gọi nó là một chiếc màn hình LCD hay chiếc TV LCD. Âu đây cũng là hệ quả của sự phát triển quá vượt trội của dòng màn hình LCD so với 2 loại còn lại của thị trường là Plasma và OLED.
 

 
Chính vì chiếm tỉ lệ lớn trên thị trường nên bản thân bên trong các dòng sản phẩm LCD cũng có đến 3 dạng công nghệ khác nhau phân biệt dựa trên 3 loại panel mà màn hình sử dụng là TN, IPS và VA.
 
LCD – TN (Twisted Nematic)
 
Có những ưu điểm vượt trội về mặt giá thành cũng như điện năng tiêu thụ nhưng bù lại chất lượng màu sắc thể hiện trên loại panel TN chỉ ở mức vừa đủ nhìn.
 
Nguyên lý hoạt động
 

 
Trước tiên chúng ta hãy bàn tới nguồn sáng dùng trong màn hình. Với những loại màn hình LCD đơn sắc và đơn giản như màn hình đen trắng trên những chiếc máy tính bỏ túi thì ánh sáng được cấp từ bên ngoài (ánh đèn học, ánh sáng mặt trời v.v…) và ở dưới đáy của tấm màn hình người ta đặt 1 lớp phủ kim loại giúp phản quang giống như gương để phản chiếu chính ánh sáng bên ngoài lại mắt chúng ta khiến chúng ta nhìn được hình ảnh hiển thị trên màn hình. Loại thứ 2 là các loại LCD thông dụng ngày nay không thể chỉ dùng ánh sáng phản chiếu để tạo hình ảnh được nên mỗi loại màn này phải gắn kèm theo một bộ phận gọi là đèn nền, đèn nền này có tể sử dụng các loại đèn huỳnh quang hay đèn LED để tạo nguồn sáng cho màn hình.
 

 
Những nguồn sáng này trước tiên sẽ phải đi qua một lớp kính lọc phân cực, lớp kính này có đặc điểm chỉ cho các tia sáng đi qua theo 1 hướng nhất định. Sau đó những tia sáng này sẽ đi qua lớp tinh thể lỏng TN. Đặc tính của lớp tinh thể lỏng này là nó có có khả năng vặn xoắn các tia sáng đi ra từ lớp kính lọc phân cực đầu tiên một góc 90 độ, sau khi đi ra khỏi lớp tinh thể lỏng này ánh sáng tiếp tục chạy qua một lớp kính lọc màu để tạo ra 3 màu đỏ, xanh da trời và xanh lá. Những ánh sáng sau khi đã có màu sắc cơ bản này sẽ tiếp tục đi qua một lớp kính phân cực thứ 2 có chiều lọt sáng vuông góc với tấm thứ nhất. Với những tia sáng không bị xoắn 90 độ khi đi qua lớp tinh thể lỏng do lỗi kỹ thuật thì ánh sáng sẽ bị chặn lại ở lớp kính lọc phân cực.
 
Khi có dòng điện cấp cho lớp tinh thể lỏng này, các tia sáng đi qua sẽ tháo xoắn và ánh sáng đi qua sẽ bị chặn lại ở lớp lọc phân cực phía trên. dòng điện chạy qua càng lớn thì độ tháo xoắn càng cao đồng nghĩa với việc ánh sáng đi qua sẽ càng ít, việc điều khiển dòng điện vô hình chung sẽ làm thay đổi độ sáng tối của ánh sáng đi tới mắt chúng ta. Mỗi điểm ảnh trên màn hình bao gồm 3 điểm ảnh phụ với 3 màu sắc cơ bản như đã nói ở trên kết hợp với sự thay đổi độ sáng trên mỗi điểm ảnh phụ này chúng ta sẽ được một điểm ảnh có đầy đủ màu sắc.
 
Điểm mạnh của loại màn hình LCD sử dụng panel TN này chính là giá thành rất rẻ và có khả năng sản xuất hàng loạt. Ngoài ra loại màn này còn có tốc độ đáp ứng rất cao (khoảng 2 phần nghìn giây), khái niệm về tốc độ đáp ứng đã được trình bày trong bài trước nên người viết xin phép không nhắc lại. Tốc độ đáp ứng cao khiến cho hình ảnh hiển thị không bị mờ viền ở những cảnh hành động với tốc độ cao, đồng thời cũng cho phép các nhà sản xuất có thể đẩy tốc độ refresh khung hình lên cao hơn, đây là một lợi thế cho các loại công nghệ hiển thị 3D sử dụng kính màn trập. Thế nhưng tốc độ đáp ứng của màn hình thường được các nhà sản xuất đẩy lên quá đáng để trở thành một công cụ quảng cáo nghe khá oai với những người không hiểu về công nghệ, bởi lẽ các loại màn hình có tốc độ đáp ứng thấp hơn 10 phần nghìn giây là mắt người đã gần như không thể cảm nhận được sự khác biệt rồi nên dù đó là 2 ms (mili giây) hay 8 ms thì trải nghiệm của chúng ta vẫn không có gì thay đổi cả. 
 
Mặt khác một phần cũng vì chất lượng hình ảnh của các loại màn hình này thuộc loại thấp nhất trong số các công nghệ màn hình hiện nay và dải màu hiển thị trên những chiếc TV LCD loại TN này rất hẹp (hay có nghĩa là nhiều gam màu gần giống nhau sẽ được thể hiện thành 1 màu).
 

Xem thêm:  Ứng dụng của trang chia sẻ dữ liệu MEGA chính thức cập bến iOS

 
Bởi lẽ, mỗi điểm ảnh phụ trong 1 điểm ảnh sẽ chỉ có thể thể hiện được 6 bit độ sáng khác nhau, nghĩa là với một pixel phụ màu đỏ chẳng hạn, khi điều chỉnh điện cấp vào tinh thể độ sáng của ánh sáng khi ra khỏi lớp lọc sẽ chỉ có thể thể hiện được 64 sắc đỏ khác nhau (6bit = 2^6). Tương tự với 2 màu xanh còn lại nên khi pha trộn những màu sắc như vậy chúng ta sẽ thu được kết quả là dải màu sắc bị hẹp như đã nói ở trên. Khi 2 màu khác nhau đặt rất sát nhau, mắt người sẽ có cơ chế tự hòa 2 màu đó lại để tạo ra một vùng màu ở giữa giúp màu sắc biến đổi đều hơn, đó là cách mà loại màn hình TN sử dụng để tạo ra được dải màu sắc liên tục.
 
Một nhược điểm nữa chính là góc nhìn của loại màn hình TN này rất tệ, chỉ cần nhìn từ các hướng không phải hướng chính diện là màu sắc đã gần như bị thay đổi hoàn toàn. Đây có lẽ cũng chính là lý do loại panel này thường được dùng trong các loại màn hình máy tính hay laptop ngày trước, cái thời mà giá các loại LCD cao cấp chưa được như bây giờ, bởi người dùng máy tính cá nhân thường ngồi chính diện.
 
LCD IPS (In Plane Switching)
 
IPS là loại công nghệ được hãng Hitachi phát triển vào năm 1996, mục đích chính của công nghệ này chính là để khắc phục những nhược điểm lớn của loại panel TN nói trên.
 
Nguyên lý hoạt động
 
Cấu tạo của panel IPS không khác nhiều so với loại TN từ các lớp lọc phân cực, lớp lọc màu và lớp tinh thể. Điểm khác biệt nằm ở lớp tinh thể lỏng, các lớp này giờ đây được xếp theo hàng ngang (đây là nguồn gốc của cụm từ “In Plane”) song song với 2 lớp kính phân cực ở trên và dưới. Các điện cực cũng phải xếp trên mặt dưới chứ không xếp ở 2 bên như màn TN. Ban đầu khi không có dòng điện chạy qua các điện cực, mạng tinh thể này xếp theo chiều ngang và chắn ánh sáng, khi cho dòng điện chạy vào 2 điện cực ở mặt dưới, dòng điện sẽ tạo ra 1 từ trường giống như nam châm khiến cho các tinh thể quay đi 1 góc 90 độ nhưng vẫn song song với mặt màn hình. Lượng điện cấp vào càng nhiều thì tinh thể sẽ quay 1 góc càng lớn, ở vị trí 90 độ ánh sáng của đèn nền có thể lọt qua nhiều nhất và thể hiện được độ sáng cao nhất của màu sắc.
 

 
Mỗi subpixel (điểm ảnh phụ) trong một điểm ảnh của panel IPS có thể thể hiện tới 8 bit (2^8 =256 cấp) độ sáng tương đương 256 mức sáng khác nhau nên khi pha trộn 3 màu chúng ta sẽ được những dải màu rộng và liên tục hơn rất nhiều so với màn TN mà không cần dùng đến thủ thuật đánh lừa mắt của loại TN. Đây cũng là lý do chính khiến màn hình IPS trở thành sự lựa chọn số một cho những người làm công việc thiết kế vì nó cho màu sắc trung thực hơn rất nhiều so với màn TN.
 
Khi khắc phục được những nhược điểm lớn của loại panel TN như góc nhìn và màu sắc thì panel IPS lại vấp phải những nhược điểm mà màn TN có thể vượt qua dễ dàng.
 
Thời gian để 1 điểm ảnh chuyển từ đen sang trắng tren màn IPS chậm hơn nhiều so với màn TN (khoản từ 6 đến 16ms) nên khi thể hiện những hoạt cảnh tốc độ cao, màn hình IPS đời cũ thường để lại một vệt sáng của hình ảnh đáng lẽ phải tắt từ trước chạy theo mà chúng ta vẫn gọi là hiện tượng “bóng ma”.
 
Chính tốc độ đáp ứng chậm nên đến nay các loại LCD sử dụng tấm nền IPS vẫn rất khó có thể đạt được tốc độ refresh tới 120 Hz để phục vụ cho các loại màn hình 3D hiện nay.
 
Và vì cách bố trí tinh thể của màn IPS khiến cho ánh sáng đi qua không nhiều ngay cả khi đang ở trạng thái mở nên loại màn hình này cần đèn nền sáng hơn bình thường để có thể tạo ra được màu sắc tươi sáng hơn nếu không màn sẽ bị cảm giác tối và u ám. Nên thời kì đầu của màn IPS người ta không dùng nó cho các loại thiết bị dùng pin như laptop hay điện thoại. Nhưng dù sao đó cũng chỉ là thời kì đầu của IPS, còn ngày nay những nhược điểm đó đã được cải tiến rất nhiều.
 
Các loại màn hình có mác Super IPS (S-IPS) hay Advanced Super IPS đều là những công nghệ nhỏ giúp cải thiện tối đa những nhược điểm của công nghệ IPS thông thường đối với loại TN nhưng đổi lại là giá thành đắt hơn kha khá so với các loại thông thường.
 

 
LCD VA (Vertically Aligned)
 
TN và IPS đều có những ưu nhược điểm riêng mà không thể khắc phục hoàn toàn, nên các hãng sản xuất đã cố gắng trung hòa cả 2 loại cộng nghệ này để tạo ra 1 thứ nằm ở giữa 2 loại panel này, một loại panel cho tốc độ đáp ứng vừa phải để không bị hiện tượng bóng ma nhưng vẫn có dải màu sắc trung thực và đẹp hơn màn hình TN và panel VA ra đời.
 
Nguyên lý hoạt động 
 

 
Cấu trúc cơ bản của 1 điểm ảnh trong panel VA cũng không có gì khác so với cấu trúc chung của màn LCD nói chung hay màn LCD IPS nói riêng. Thay vì xếp các tinh thể song song với mặt kính thì màn VA lại xếp các tinh thể vuông góc với mặt kính lọc (cũng là nguồn gốc cho cụm từ “Vertically Aligned”). Các điện cực lại quay về cách sắp xếp của màn TN trước đây là 1 trên 1 dưới để có thể tạo ra từ trường theo chiều dọc. Khi không có dòng điện, các tinh thể sẽ chặn hoàn toàn ánh sáng từ đèn nền đi lên, khi cấp điện từ trường sẽ làm các tinh thể này nghiêng đi 1 chút để cho phép ánh sáng đi qua, góc nghiêng càng lớn thì ánh sáng đi qua càng nhiều.
 
Các loại công nghệ phụ khác
 
LED
 

 
Thời gian gần đây rất nhiều hãng sản xuất TV dùng các chiêu thức maketing để khiến mọi người nhầm tưởng LED là một công nghệ màn hình mới hoàn toàn, nhưng thực chất nó chỉ là công nghệ đèn nền mới cho ánh sáng tốt hơn và tiết kiệm điện hơn so với đèn nền huỳnh quang vẫn được sử dụng trước đây. Công nghệ này hiện nay có 2 loại chính là Full LED và edge LED. Edge LED là loại màn hình mà đèn LED chỉ được bố trí xung quanh viền màn hình giống như đèn huỳnh quang và hắt sáng vào trung tâm nên loại màn này thường có giá không khác màn hình thường là mấy nhưng vẫn được nhiều nhà sản xuất gắn mác màn hình LED. Loại thứ 2 là Full LED, công nghệ này lợi dụng sự nhỏ bé của các bóng LED nên đã tạo ra 1 tấm đèn LED dày đặc đặt ngay sau các lớp lọc phân cực chứ không hắt sáng vào thông qua tấm plastic nữa nên ánh sáng ở loại màn này phủ đều đến mọi góc cạnh của màn hình và độ sáng cũng cao hơn rất nhiều so với Edge LED nhưng giá thành thì lại khác nhau 1 trời 1 vực.
 
TFT  (Thin film transistor)
 
Là công nghệ tạo ra các transistor bán dẫn bằng nhiều lớp kim loại mỏng và nhựa xếp xen kẽ nhau. Công nghệ này chỉ đơn giản là thay đổi cách cấp điện cho các tinh thể. Và hâu hết các loại màn hình thông dụng hiện nay đều sử dụng công nghệ này để cấp điện cho các tinh thể.
 
Qua bài viết hy vọng các bạn sẽ hiểu phần nào về cách mà các nhả sản xuất đặt tên cho những sản phẩm công nghệ cao này qua đó biết được đâu là thay đổi công nghệ thực sự và đâu chỉ là cái tiến công nghệ cũ.
 
Tham khảo: PC World

0 ( 0 bình chọn )

Webmax – Thiết Kế Website Chuyên Nghiệp

https://webmax.vn
Webmax là công ty thiết kế website nổi tiếng, uy tín chuyên cung cấp dịch vụ thiết kế website chuyên nghiệp giá rẻ, chuẩn SEO, tốc độ cực cao uptime 99%

Ý kiến bạn đọc (0)

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Bài viết liên quan

Bài viết mới

Xem thêm